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1 Introduction

1.1 Scope

Our goal is to produce an expository paper proving that there exist exactly 17 Wall-
paper Groups, built up from the knowledge from 4340. Due to space constraints
we will not be able to prove this in full, instead we prove the important lemmas,
theorems, and some representative cases.

1.2 Prerequisites

In addition to 4340, we assume knowledge of linear algebra at the level of 4330. In
particular we will make use of the First Isomorphism Theorem for vector spaces and
extensive use of orthogonal transformations.

2 Background

2.1 The Euclidean Group

Definition 1. An isometry is a distance preserving map from Rn to itself. Equiva-
lently, it is an affine transformation

x ÞÑ Mx ` v

for some orthogonal M P Mn and v P Rn. [5] [2]

We won’t prove the equivalence of the definitions, see [2] for a proof of this fact.

Lemma 2. Any isometry g is invertible, and its inverse is also an isometry.

Proof. Let T pxq “ Mx`v be an isometry. Then let Hpxq “ MT px´vq. Then H is an
inverse of T . Moreover Hpxq “ MTx´MTv, withMT orthogonal andMTv P R2.

Definition/Lemma 3. The Euclidean Group, E2, is the group of isometries of
the plane under composition

Proof. • clearly the identity map, ι preserves distances so it is in E2, moreover

pι ˝ gqpxq “ ιpgpxqq “ gpxq “ gpιpxqq “ pg ˝ ιqpxq

for all g P E2

• By lemma 2, the inverse axiom is satisfied.

• The associative law holds since function composition is associative
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Definition/Lemma 4. Let T be the subgroup of translations. LetO be the subgroup
of orthogonal transformations (rotations about the origin and reflections across lines
through the origin). Then E2 “ T ˝ O

Proof. By definition, any ϕ P E2 is of the form ϕpxq “ Mx ` v, in particular ϕpxq “

pα ˝ βqpxq where βpxq “ Mx and αpxq “ x ` v.

The proof that T,O are subgroups is an exercise, it follows from basic facts from
MATH 4330.

Lemma 5. T is a normal subgroup of E2.

Proof. Take f P O, τ P T with τp0q “ v.

As the orthogonal group O is linear, we have that f is linear.

Then,

pf ˝ τ ˝ f´1
qpxq “ fpf´1

pxq ` vq

“ fpf´1
pxqq ` fpvq

“ x ` fpvq

which is a translation. Translations also commute with other translations, so we know
that τ 1ττ 1´1 “ τ for any τ, τ 1 P T . As T and O together generate E2, we thus have
that T is a normal subgroup of E2.

Definition 6. Let fpxq “ Mx`v if detpMq “ 1, f is a direct isometry. Otherwise
(detpMq “ ´1 and), f is an opposite isometry.

Alternatively, let g “ τf where τ P T, f P O. Then, if f is a rotation then g is a
direct isometry, and if f is a reflection then g is an opposite isometry.

Definition 7. A glide reflection is a reflection over some line m followed by a
translation parallel to that line.

Theorem 8. Every direct isometry is either a translation or a rotation. Every op-
posite isometry is a reflection or a glide reflection.

Proof. Any direct isometry is represented by the pair pv,Aq, where A is a rotation of
angle 0 ď θ ă 2π. If θ “ 0, this is just a translation.

Otherwise, 0 ă θ ă 2π, so consider I ´ A. Using the formula for a rotation matrix

I ´ A “

„

1 ´ cos θ sin θ
´ sin θ 1 ´ cos θ

ȷ
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It has determinant 2 ´ 2 cos θ ą 0. Thus I ´A is invertible so c´Ac “ pI ´Aqc “ v
has a unique solution c. Now, pv, Aq “ pc ´ Ac,Aq and

x ÞÑ pAx ` c ´ Ac “ Apx ´ cq ` cq

is a rotation about c.

Any opposite isometry is represented by the pair pv,Bq, where B is a reflection over
a line l through the origin. Assume that v is not parallel to this line since if so we
are done (in particular Bv ‰ v).

If Bv “ ´v then B is a reflection in the line l perpendicular to v. Let a “ v{2 then
pv,Bq is a reflection in the line m “ l ` a. Indeed

a ` Bpx ´ aq “ a ` Bx ´ Ba “ a ` Bx ´ B
1

2
v “ 2a ` Bx

If instead Bpvq ‰ ´v, v then let w :“ v ´ Bv. Then

Bw “ Bpv ´ Bvq “ Bv ´ B2v “ Bv ´ v “ ´w

Then let a be half the projection of v onto w, i.e. a :“ 1
2
v¨w

}w}2
w. Then let b “ v ´ 2a,

so that b is orthogonal to w (and hence parallel to to the line l).

Then pv,Bq “ p2a ` b, Bq and it is a reflection over the line l ` a followed by a
translation by b (parallel to it). Indeed since a is a scaling of w then since B is linear,
Bw “ ´w ùñ Ba “ ´a so

Bpx ´ aq ` a ` b “ Bx ´ Ba ` a ` b “ Bx ` 2a ` b

3 The Wallpaper Groups

Definition/Lemma 9. Define the homomorphism π : E2 Ñ O2 by

πpx ÞÑ Mx ` vq “ M

If G is a subgroup of E2, we write H for G X T and J for πpGq

we call H the translational subgroup of G and J the point group of G.
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Proof. We write pv,Mq for the map x ÞÑ Mx`v. To verify that π is a homomorphism,
we have that

πppv,Mqpv1,M1qq “ πpx ÞÑ v ` Mpv1 ` M1xqq

“ πpv ` Mv1,MM1q

“ MM1

“ πpv,Mqπpv1,M1q

Definition 10. A subgroup of E2 is a wallpaper group if its translational subgroup
is generated by two independent translations and its point group is finite.

Lemma 11. All finite subgroups of O are either cyclic or dihedral.

Proof. Let G be some finite non-trivial subgroup of O2.

1. • First, suppose that G Ď SO2 such that every element of G is a rotation
of the plane. Write Rθ for the matrix representing clockwise rotation by θ
about the origin for 0 ď θ ă 2π.

• Choose Rϕ P G with the smallest positive ϕ. We know that for any Rθ P G,
we can use euclidean division to divide θ by ϕ such that θ “ kϕ ` ψ for
k P Z and 0 ď ψ ă ϕ.

• We get that
Rθ “ Rkϕ`ψ “ Rk

ϕRψ

and thus Rψ “ R´k
ϕ Rθ P G. As ϕ is defined to be the smallest possible, we

have that 0 ď ψ ă ϕ ùñ ψ “ 0. Therefore, Rθ “ Rk
ϕ and G is cyclic.

2. • Let G not be entirely inside SO2. Let H “ G X SO2 and K “ GzH.

• Choose k P K R H. k is some matrix of determinant ´1.

• Take the set of elements S “ tkh | h P Hu Ď K. These are all matrices
with determinant ´1. We want to show that K Ď S ùñ S “ K.

• Let k1 P K. We know that k´1 P K and therefore that k´1k1 has deter-
minant 1 and is in H. Then, we see that k´1k1 “ h for some h P H and
thus k1 “ kh P S. Therefore, K “ S and so |K| “ |S| “ |H| and so
rG : Hs “ rG : Ks “ 2.

• Now, choose a generator A for H and some element B from G ´ H.

• B represents a reflection and thus B2 “ I. Thus, the elements of G are

I, A, ¨ ¨ ¨ , An´1, B,AB, ¨ ¨ ¨ , An´1B

4



and they satisfy An “ I, B2 “ I, BA “ A´1B. Thus, A Ñ r, B Ñ s is an
isomorphism between G and the dihedral group Dn.

3.1 Characterizing the Wallpaper Groups

Let G denote a wallpaper group with translation subgroup H and point group J . Let
L be the orbit of the origin under the action of H on R2 by (left) translation.

Theorem 12. Take a a non-zero vector of minimum length in L, then choose a
linearly independent non-zero vector b in L whose length is as small as possible.

Then, set L is the lattice spanned by a and b. That is to say, L consists of all linear
combinations ma ` nb where m, b P Z

Proof. See figure 1

• ma ` nb Ď L

The map pv, Iq ÞÑ v is an isomorphism between T and the additive group R2

sending H to L. In other words, the action T ñ R2 is defined by pv, Iq ÞÑ v
left
ñ 0

is an isomorphism, so we know that H is a subgroup of T and thus L is a
subgroup of R2.

Therefore, because a,b P L, we know that ma ` nb Ď L.

• L Ď ma ` nb

Partition the plane into parallelograms using the lattice spanned by a and b,
as shown in Figure 1.

If x Ď L is not in the lattice, then we know that it lies in one of the parallelo-
grams in the lattice. This means that its distance from its nearest neighbor |c|

is less than |b|. As shown in the diagram, this is because the entire parallelo-
gram can be covered by two circles of radius |b| centered at opposite corners as
|b| ě |a|.

Let w “ x ´ c. We can write x “ τ1p0q and c “ τ2p0q, and thus w “

τ1p0q ´ τ2p0q “ pτ1 ´ τ2qp0q P L.

If |w| ă |a| this is a contradiction as |a| was chosen to be the vector of minimum
length in L. If |a| ď |w| ă |b|, then w must be linearly independent to a in
order to lie inside the parallelogram, which contradicts the construction of b,
as |w| P L ă |b|.

Therefore, such a x cannot exist and so L Ď ma ` nb

6 L “ ma ` nb.
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Theorem 13. The point group J acts on the lattice L by conjugation.

Proof. If M P J and x P L, we just need to show that Mx P L since the other
properties (associativity and identity) follow directly from properties of matrix mul-
tiplication.

Suppose that πpgq “ M for some g “ pv,Mq, and let τ “ px, Iq. H is the kernel
of the homomorphism π : G Ñ J , and thus it is a normal subgroup of G, and so
gτg´1 P H. Moreover, we have that

gτg´1
“ pv,Mqpx, Iqpv,Mq

´1

“ pv,Mqpx, Iqp´M´1v,M´1
q

“ pv,Mqp´M´1v ` x,M´1
q

“ pv ´ MM´1v ` Mx, Iq

“ pMx, Iq

This is a translation P H, so Mx is a member of L.

Theorem 14. The order of a nontrivial rotation in a wallpaper group can only be
2, 3, 4, or 6

Proof. Let B P J , the point group. Since the point group of any wallpaper group
is finite B has finite order. So let q be the order of B. Then either B is clockwise
or anticlockwise. If it is anticlockwise then B is a rotation of angle 2π{q if it is
anticlockwise then Bq´1 is a rotation of angle 2π{q. So consider A P J where

A “

„

cosp2π
q

q ´ sinp2π
q

q

sinp2π
q

q cosp2π
q

q

ȷ

Let a be a nonzero shortest vector in the lattice, L of the wallpaper group. Since
J acts on L (Theorem 13), Aa P L. Suppose for a contradiction that q ą 6. Then
2π{q ă 2π{6, so cosp2π{qq ą 1{2. Now we claim that Aa ´ a P L is shorter than a,
contradicting the definition of a.

First calculate

Aa “

„

cosp2π
q

q ´ sinp2π
q

q

sinp2π
q

q cosp2π
q

q

ȷ „

a1
a2

ȷ

“

„

a1 cosp
2π
q

q ´ a2 sinp2π
q

q

a1 sinp2π
q

q ` a2 cosp
2π
q

q

ȷ

6



then

}Aa ´ a}
2

“ }Aa}
2

´ 2xAa, ay ` }a}
2

“ 2}a}
2

´ 2xAa, ay

“ 2}a}
2

´ 2

ˆ

a21 cosp
2π

q
q ´ a2a1 sinp

2π

q
q ` a1a2 sinp

2π

q
q ` a22 cosp

2π

q
q

˙

“ 2}a}
2

´ 2

ˆ

a21 cosp
2π

q
q ` a22 cosp

2π

q
q

˙

ă 2}a}
2

´ 2

ˆ

1

2
a21 ` a22

1

2

˙

“ }a}
2

Hence the order of any element must be at most 6. Suppose for a contradiction q “ 5.
Then by a similar calculation, A2a ´ a is shorter than a.

Corollary 15 (of theorem 14 and lemma 11). The point group of a wallpaper group
is generated by a rotation through one of the angles 0, π, 2π{3, π{2, π{3 and possibly
a reflection.

Lemma 16. An isomorphism preserves order.

Proof. In particular, if g has order n then pϕpgqqn “ ϕpgnq “ ϕpeq “ e so order of
ϕpgq is finite and divides n in the other direction, let r be the order of ϕpgq, we have
the inverse isomorphism, gr “ pϕ´1pϕpgqqqr “ ϕ´1pϕpgqrq “ ϕ´1peq “ e. So n|r. Since
n|r and r|n then r “ n.

Theorem 17. An isomorphism between wallpaper groups takes translations to
translations, rotations to rotations, reflections to reflections and glide reflections to
glide reflections

Proof. Let ϕ : G Ñ G1 be an isomorphism between wallpaper groups, and let τ be a
translation in G.

Translations and glides have infinite order, whereas rotations and reflections have
finite order, thus ϕpτq is either a translation or a glide by theorem 16.

If ϕpτq is a glide then let τ1 be a translation whose direction is not parallel to the glide,
then τ1 does not commute with ϕpτq, for the same reason, τ 21 does not commute with
ϕpτq. Since ϕ is an isomorphism, the there is an element g P G such that ϕpgq “ τ1.
Again, g must be either a translation or a glide. Then g2 is a translation hence it
commutes with τ , but then

τ 21ϕpτq “ ϕpg2qϕpτq “ ϕpg2τq “ ϕpτg2q “ ϕpτqϕpg2q “ ϕpτqτ 21
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which is a contradiction. We have shown ϕ takes translations to translations and
glides to glides.

Reflections have order 2, hence the image of a reflection under isomorphism is either
a reflection or a half turn by lemma 16. Let g P G be a reflection s.t. ϕpgq is a half
turn, and choose τ P G in a direction which is not perpendicular to the mirror of
g. Then τg is a slide by proof of theorem 8. But ϕpτgq “ ϕpτqϕpgq is the product
of a translation and a half-turn which is another half-turn. This is a contradiction,
so reflections correspond to reflections. Finally, rotations are forced to correspond to
rotations.

Corollary 18. If two wallpaper groups are isomorphic, then their point groups are
also isomorphic.

Proof. Let G,G1 be wallpaper groups with translation subgroups H,H1 and point
groups J, J1 respectively. If ϕ : G Ñ G1 is an isomorphism then ϕpHq “ H1 by
theorem 17. So ϕ induces an isomorphism from G{H to G1{H1. Then J » G{H »

G1{H1 » J1.

4 Wallpaper patterns

There are seventeen different wallpaper groups. We do not have the space to go
through all of them, so instead we will focus on a few examples.

We classify the lattice into 5 types based on the shape of the basic parallelogram
determined by a and b.

Definition 19. Lattice Type, pick a, b as in theorem 12, wlog replace b with -b
so that

}a ´ b} ď }a ` b}

The 5 lattice types are defined as follows (see figure 6):

Oblique: }a} ă }b} ă }a ´ b} ă }a ` b}

Rectangular: }a} ă }b} ă }a ´ b} “ }a ` b}

Centred Rectangular: }a} ă }b} “ }a ´ b} ă }a ` b}

Square: }a} “ }b} ă }a ´ b} “ }a ` b}

Hexagonal: }a} “ }b} “ }a ´ b} ă }a ` b}

While it appears that we are missing the case where }a} “ }b} ă }a ´ b} ă }a ` b},
it turns out that the basic parallelogram is a rhombus,and since the diagonals bisect

8



eachother at right angles, this is a centred rectangular structure based on vectors
a ´ b, a ` b. See figure 6

Now we introduce the internationally recognized naming of the wallpaper groups.
Each name consists of letters from p,c,m,g and numbers 1,2,3,4,6. p refers to the
lattice and is short for primitive, it refers to viewing the lattice as copies of the basic
parallelogram with no lattice points inside. c is short for centred lattice and refers
to taking a nonprimitive cell together with its center point as the basic building
block. m is for mirror and g is for glide reflection. 1,2,3,4,6 indicate rotations of the
corresponding order (order 1 is the identity).

Continuing notation from earlier, G is a wallpaper group, H the translational sub-
group, J the point group, L the lattice, a, b vectors which span L as in Theorem 12.
Wlog we may assume a lies on the x axis and b on the y, but now it may be that a, b
swap names (b could be shorter than a).

We proceed by considering each type of lattice in turn.

Oblique The only orthogonal transformations which preserve L are identity and rotation
by π about the origin, so the point group of G is a subgroup of t˘Iu. There
are two subgroups: tIu and t˘Iu.

(p1) If J only contains the identity matrix, G is simply generated by two inde-
pendent translations so its elements have the form pma`nb, Iq form,n P Z.

(p2) If J “ t˘Iu, then G contains a half turn (a rotation of angle π). Wlog let
the origin be the fixed point of this rotation, so that p0,´Iq P G.

We claim that the union of the cosetsHYHp0,´Iq is equal to G. Indeed, it
must contain G since if pv,Mq P G, thenM is ˘I. IfM “ I then pv,Mq “

pv, Iq “ v P H and if M “ ´I then since G is a group pv,´Iqp0,´Iq “

pv, Iq P G so v P H so pv,´Iq P Hp0,´Iq. On the other hand, it is a subset
of G since by definition H Ă G and since G is a group, and p0,´Iq P G
then Hp0,´Iq Ă G.

So any elements of G which are not translations are in Hp0,´Iq and have
the form

pma ` nb, Iqp0,´Iq “ pma ` nb,´Iq

for m,n P Z. I.e. in addition to the transformations in p1, we have all the
half turns about the points 1

2
ma` 1

2
nb (see proof of theorem 8, in this case

we have 2c “ ma ` nb so the center of rotation is 1{2pma ` nbq).

Rectangular There are 4 orthogonal transformations which preserve L: identity, half turn
about 0, reflection in x-axis B0, and reflection in y-axis Bπ. Denote by Bϕ a
reflection in the line through the origin with an angle of ϕ{2 with the positive
x-axis. Ignoring those wallpaper posibilities we have previously seen, we have
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(pm) J “ tI, B0u, and G contains a reflection in a horizontal mirror (G contains
p0, B0q). As before, We claim that the union of the cosets H Y Hp0, B0q

is equal to G. Indeed, it must contain G since if pv,Mq P G, then M is
I, B0. If M “ I then pv,Mq “ pv, Iq “ v P H and if M “ B0 then since G
is a group pv,B0qp0, B0q “ pv, Iq P G so v P H so pv,B0q P Hp0, B0q. On
the other hand, it is a subset of G since by definition H Ă G and since G
is a group, and p0, B0q P G then Hp0, B0q Ă G.

(pg) J “ tI, B0u, but this time, there are no reflections in G (p0, B0q R G). So
G must contain a glide reflection whose line is horizontal, and we choose
a point of this line as the origin. A glide reflection composed with itself is
a translation, so the glide has the form p1

2
ka,B0q for some integer k. If k

is even then

p0, B0q “ p´
1

2
ka, Iqp

1

2
ka,B0q P G

A contradiction, hence k is odd and

p
1

2
a,B0q “ p´

1

2
pk ´ 1qa, Iqp

1

2
ka,B0q P G

As before elements of G are either in H or Hp1
2
a,B0q. Suppose pv,Mq P G,

if M “ I we are done, so assume M “ B0. Then

pv,B0qp´
1

2
a,B0q “ p´

1

2
B0a ` v, Iq “ p´

1

2
a ` v, Iq

Next, since p´1
2
a ` v, Iq P H, p´1

2
a ` v, Iqp1

2
a,B0q “ pv,B0q P Hp1

2
a,B0q.

The other inclusion is trivial, see the same argument for (pm) above.

Note that interchanging horizontal and vertical with Bπ instead of B0 gives
an isomorphic group.

While there are yet 17-4 = 13 more wallpaper groups to describe, and
we unfortunately don’t have room to fit them all, so we will conclude by
proving that the four wallpaper groups we have thus far observed are in
fact all distinct.

Theorem 20. No two of p1, p2, pm, and pg are isomorphic.

Proof. By way of contradiction, since the point group of p1 is trivial while the point
groups of the others are nontrivial, we obtain a contradiction by corollary 18. Since
p2 is the only one which contains rotations it cannot be isomorphic to the others by
theorem 17. Similarly, pg does not contain a reflection, while pm does.
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Figures and illustrations

x

c
a

b

Figure 1: x on the lattice ma ` nb
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Figure 2: p1 wallpaper, From The Grammar of Ornament (1856), by Owen Jones.
“Middle Ages No 3” (plate 68), image #19.

Figure 3: p2 wallpaper, by Owen Jones

12



Figure 4: pm wallpaper, by Harry Princeton

Figure 5: pg wallpaper, by Harry Princeton
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Figure 6: Lattice Types, illustration from Armstrong [1]
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